您现在的位置是:汇众官网 > 汇众平台 >

北京做数据标记平台

2021-06-09 10:06汇众平台 人已围观

简介汇众平台首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。 互联网的数据主要来自于互联网用户和服务器等网络设备,主要是大量的文本数...

  首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。

  互联网的数据主要来自于互联网用户和服务器等网络设备,主要是大量的文本数据、社交数据以及多媒体数据等,而工业数据主要来源于机器设备数据、工业信息化数据和产业链相关数据。从数据采集的类型上看,不仅要涵盖基础的数据,还将逐步包括半结构化的用户行为数据,网状的社交关系数据,文本或音频类型的用户意见和反馈数据,设备和传感器采集的周期性数据,网络爬虫获取的互联网数据,以及未来越来越多有潜在意义的各类数据。海量的Key-Value数据。表管理:表结构的获取一般会有两种方式,一种是通过连接数据库获取,一种是本地保存,直接从本地获取。具体使用哪种方式根据实际情况来决定。如果是用的第二种,则需要将表结构整理预先导入系统,以便后期使用。hive的表结构有一些特殊,比一般数据库的表结构多几列,如:分列名称,分区值等。映射配置:映射配置主要是确定源表和目标表,同时建立字段映射关系;亦可设置过滤条件,数据采集的周期配置设置等。

  要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。

  类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。

  AI公司在其细分领域内积累了大量数据,这些数据往往在使用一次后就不再产生更多价值,随之带来了第二个问题,数据无法沉淀和复用。基于这两个问题,“人工智能训练师”应运而生。“人工智能训练师”这个职位,据说***早是由BAT某部门在2年前创造的。一般而言,AI公司从客户(用户)那里获取到的原始数据无法直接用于模型训练,在“人工智能训练师”出现以前,是由AI产品经理先用相关工具简单处理,再交给数据标注人员进行标注加工,但因为标注人员对数据的理解和标注质量差异很大,导致整体标注工作的效率和效果都不够理想。AI公司在其细分领域内积累了大量数据,这些数据往往在使用一次后就不再产生更多价值,随之带来了第二个问题,数据无法沉淀和复用。基于这两个问题,“人工智能训练师”应运而生。“人工智能训练师”这个职位,据说***早是由BAT某部门在2年前创造的。一般而言,AI公司从客户(用户)那里获取到的原始数据无法直接用于模型训练,在“人工智能训练师”出现以前,是由AI产品经理先用相关工具简单处理,再交给数据标注人员进行标注加工,但因为标注人员对数据的理解和标注质量差异很大,导致整体标注工作的效率和效果都不够理想。

  这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。

  对于如何更好地做好职业规划,首都科技领军人才、清华大学电子工程系博士谢耘提出了更高的要求。他说,人工智能训练师***重要的是要把方法搞透,不同的方法原理,适用于不同类型的问题,人工智能训练师要系统地积累经验,把感性经验总结为理性的认识,不断地持续练,要按照工匠的标准去要求自己。但是,人工智能训练师不应仅仅局限于工匠格局,应通过经验摸索,进一步总结出更深一层的原理,创造普适性的成果。然后提供给用户解决方案或者决策参考。系统日志采集系统:对日志数据信息进行日志采集、收集,然后进行数据分析,挖掘公司业务平台日志数据中的潜在价值。简言之,收集日志数据提供离线和在线的实时分析使用。目前常用的开源日志收集系统为Flume。网络数据采集系统:通过网络爬虫和一些网站平台提供的公共API(如Twitter和新浪微博API)等方式从网站上获取数据。可以将非结构化数据和半结构化数据的网页数据从网页中提取出来,并将其提取、清洗、转换成结构化的数据,将其存储为统一的本地文件数据。目前常用的网页爬虫系统有Apache Nutch、Crawler4j、Scrapy等框架。

  我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。

  2)工艺改进与优化:对制造过程的主要工艺参数与完工后的产品合格率进行综合分析,便于为工艺改进与优化。

  在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。

Tags: 汇众平台 

标签云

站点信息

  • 文章统计739篇文章
  • 标签管理标签云
  • 微信公众号:扫描二维码,关注我们